Large Language Models

From AI Wiki

A large language model (LLM) is a language model trained with self-supervised machine learning on a vast amount of text, designed for natural language processing tasks, especially language generation. The largest and most capable LLMs are generative pre-trained transformers (GPTs) and provide the core capabilities of modern chatbots. LLMs can be fine-tuned for specific tasks or guided by prompt engineering. These models acquire predictive power regarding syntax, semantics, and ontologies inherent in human language corpora, but they also inherit inaccuracies and biases present in the data they are trained on.

They consist of billions to trillions of parameters and operate as general-purpose sequence models, generating, summarizing, translating, and reasoning over text. LLMs represent a significant new technology in their ability to generalize across tasks with minimal task-specific supervision, enabling capabilities like conversational agents, code generation, knowledge retrieval, and automated reasoning that previously required bespoke systems.

LLMs evolved from earlier statistical and recurrent neural network approaches to language modeling. The transformer architecture, introduced in 2017, replaced recurrence with self-attention, allowing efficient parallelization, longer context handling, and scalable training on unprecedented data volumes. This innovation enabled models like GPT, BERT, and their successors, which demonstrated emergent behaviors at scale, such as few-shot learning and compositional reasoning.

Reinforcement learning, particularly policy gradient algorithms, has been adapted to fine-tune LLMs for desired behaviors beyond raw next-token prediction. Reinforcement learning from human feedback (RLHF) applies these methods to optimize a policy, the LLM's output distribution, against reward signals derived from human or automated preference judgments. This has been critical for aligning model outputs with user expectations, improving factuality, reducing harmful responses, and enhancing task performance.

Benchmark evaluations for LLMs have evolved from narrow linguistic assessments toward comprehensive, multi-task evaluations measuring reasoning, factual accuracy, alignment, and safety. Hill climbing, iteratively optimizing models against benchmarks, has emerged as a dominant strategy, producing rapid incremental performance gains but raising concerns of overfitting to benchmarks rather than achieving genuine generalization or robust capability improvements. [1]

References

  1. Wikipedia